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A New FFT Technique for the Analysis of Contact Pressure and
Subsurface Stress in a Semi-Infinite Solid
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A numerical procedure for contact analysis and calculating subsurface stress was developed.
The procedure takes the advantage of signal processing technique in frequency domain to
achieve shorter computing time. Boussinesq's equation was adopted as a response function in
contact analysis. The validity of this procedure was proved by comparing the numerical results
with the exact solutions. The fastness of this procedure was also compared with other algorithm.
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1. Introduction

To analyze tribological phenomena, the contact
pressure distribution and subsurface stress field
should be evaluated. Nonconforming contacts
such as rolling bearing elements or gear teeth are
subjected to high contact stresses and the subsur
face stresses which cause pitting or spalling. Even
in a conformal contact condition, the delamina
tion wear occurred by the cyclic stresses due to
the contacts of asperities (Suh, 1977).

Numerous tribological contact problems were
studied with Hertzian contact model since his
Contact analysis (Hertz, 1882) and Greenwood
and Williamson (1966) analyzed rough surface
contacts with the assumption of spherical shape of
asperity tips and Gaussian distribution of asperity
heights. A more complicated random process
model with spherical asperities was adopted by
Bush et. al (1975). The results of their contact
models show good estimate on average properties
of rough contact in a low contact pressure.
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However, under the contact of high load, the
contacts of adjacent asperities affect each other
and those approaches inevitably yield some error.

With the advent of computer, various numeri
cal techniques have been recently developed.
Finite element and boundary element methods
popular in structural analysis are also used in
contact analysis(Anderson, 1982; Webster, 1986;
Kwak, 1990). They are powerful in the contact
analysis of complex shaped bodies and layered
solids. But there are some difficulties in' applica
tion to 3-dimensional cases. For example, the size
of stiffness matrix is very large in 3-dimensional
analysis.

The contact area in a tribological problem is
relatively small enough to be approximated as the
contact on a half space. Most of numerical
schemes for the contact analysis in tribology are
thus based on Boussinesq's solution. Kalker and
Randen(1972) used a numerical technique based
on minimum principle of the total internal
energy. Tian and Bhushan (1996) calculated the
contact of 3-dimensional surfaces with the var
iational principle. Ren and Lee (1993) adopted
the moving grid method to 3-dimensional contact
analysis which reduced matrix size in linear equa
tions, saved the computer memory space effective
ly, and enabled the reduction of calculation time.
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2. Analysis Procedure

2.1 Boussinesq's equation
The elastic displacements due to a concentrated

point load P at the origin on the surface of a half

space are:

But these methods are also inadequate to the

analysis of contact of real rough surfaces. To

represent the roughness of real surface, a very fine

mesh is needed and the number of nodes is in

creased very much. So most analyses are confined

to 2-dimensional (Webster, 1986; Bailey and

Sayles, 1991; Kornvopoulous, 1992) except a few

cases (Tian and Shushan, 1996; Lai and Cheng

1985) .

To overcome this problem, the signal process

ing technique in frequency domain can be used in

the contact analysis. This procedure takes the

advantages of Fast Fourier Transformation

(FFT). The effectiveness of this procedure is to

reduce the computing time substantially in com

parison to conventional methods. For example, in

the case of the surface with N X N node numbers,

o (Nlog2N) multiplications are required in the

signal process in frequency domain, but in con

ventional algorithms, the influence matrix of N 2

X N" should be constructed and a set of N" linear

algebraic equations should be solved. Ju and

Farris (1996) introduced a FFT method for 2

-dimensional line load contact problem. Stanley

and Kato (1997) presented the method that took

advantages of both FFT and the variational for

mulation for 2-dimensional and 3-dimensional

elastic contact problems of arbitrary topography.

Their methods are based on Westergaard's solu

tion of sinusoidal displacement (Westergaard,

1936) .

In this study, a new FFT algorithm for the

contact analysis is introduced, in which Bouiss

sinesq's equation is used as a response function

and subsurface stress is also obtained by FFT

algorithm.

(lc)Uz=~{r + 2(1-11) }
47rC {7 P

I
where h(~, 7J) and displacement

j (~)2+ (7J)2

U z due to the distributed pressure p is the convo

lution of p and h.

where p={ (X-~)2+ (Y_7J)2+ Z2}1!2
On the surface of the solid, the displacement is:

Uz= 1~~ lfp(~, 7J)' h(x-~, Y-7J)

(4)

2.2 Contact analysis with FFT
With the two functions II and 12, and their

corresponding Fourier transforms F I (cv) and F2

(cv), the Fourier transform of the convolution of

the two functions is F I(cv)F2(CV). The displace

ment due to the distributed pressure p on the

surface, can be expressed in frequency domain as

U(cvx, CVy) =P(cvx, cvy)H(cvx, CVy) (5)

where P (cvx' CVy) is the Fourier transform of

pressure p and H (cvx, CVy) is the Fourier trans

form of h which can be treated as a response

function in signal process. Fourier transform of

pressure p can be expressed as

P (cvx, CVy) = U (cvx' CVy) / H (cvx, CVy) (6)

If the surface deformation is known, the contact

pressure can be obtained by the inverse Fourier

transform of Eq. (5). In conventional techniques,

the procedure of getting the contact pressure from

the surface deformation is a matrix inversion

process or a process of solving a set of linear

algebraic equations which are time consuming,

but in Eq. (5), that procedure is converted to a

simple algebraic procedure of division.

where p= (x2+y 2+Z2) 112. The surface plane was

taken to be the plane z=O, and the positive sense

of the axis of z is downwards.

The distributed pressure p (~, 7J) acting on the

area S produces the displacements in the direction

of the load:

(I a)

(Ib)

Ux= 4:C {-'?-- (1-211) p(~"'-tz) }

_ p {YZ 2 Y}
Uy- 47rC 7- (1- II) p(p+z)
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2.3 Subsurface stresses in the solid
Subsurface stresses at a point (x, y. z) are

expressed as (LOVE, 1929)

__I _,.1_ oV _--.I:!..- (fx _ (f V
Ox- 2Jr (A+,u oz A+,u W z-axr) (7a)

__I _,.1_ oV _--.I:!..- (fx _ (f V
oY-1 Jr (A+,u oz A+,u W zayr) (7b)

I sv (fV
o"=2"7r( oz - zazr) (7c)

I <fV
r",..= -27r(z OYoz) (7d)

I 02V
ra= -27r(z ozox) (7e)

t: I_(~.1..L+z (fV ) (7f)
xv r: lJr A+,u oxoy oxoy

in which X is the Boussinesq's 3-d logarithmic
potential function. V is the Newtonian potential.
A and ,u are Lame's elastic constants for the
material of the solid,

Fig. 1 Schematic representation of the deformation
of contact

where g is the gap between two bodies and p is
the contact pressure. g is expressed as

(8a)

(8b)
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····uBODY 2

p(x, y) =0. st». y) 20

p!», y) 20, g(x, y) =0

Inside the contact region:

Outside the contact region:

1===1

E
2(1 + v)

Ev
(l+v)(1-2v)' ,u

When uniform pressure p is applied to the
region of the surface consisting of 2a X 2b square,
the derivatives of X and V in stress equation are
given in Appendix. By numerical integration of
the stresses due to the pressure on the discretized
small square over contact area, the subsurface
stresses at point (x, y, z) are obtained conven
tionally. It is a time consuming procedure to
calculate the stress distribution in a 3-dimen
sional body with the numerical double integra
tion of contact pressure by this conventional
method. Fortunately, the derivatives of X and V
in stress equation are the functions of (x -~) and
(Y-7J), thus the stresses due to distributed con
tact pressure p(~, 7J) on the surface S are expres
sed as convolution integrals. So, the FFT algor
ithm proposed in Sec. 2.2 is also applicable to
calculating the stress distribution in a body
caused by contact pressure.

3. Numerical Procedure

Figure I is the schematic representation of
contact deformation. To solve a contact problem,
an iterative procedure is required because of fol
lowing constraints.

g(x, y)=Ul(X, y)+U2(X, y)

+hl(X. y) +h2 (x . y) -8 (9)

where 8 is the relative approach of the two sur
faces, hi (x) and he (z) are the height distribu
tions of each surface profile before deformation,
and UI (x. y) and U2(X, y) are the deformations
of each surface. Figure 2 shows the flow diagram
for calculating contact pressure and subsurface
stress.

4. Numerical Results and Discussion

A new numerical algorithm for contact and
subsurface stress distribution was developed.

At first, the contact stress and deformation of
the two bodies were solved by FFT method.

The numerical results coincides very well with
The major advantage of this method is of reduc
ing CPU time in comparison to any other algor
ithm. The long CPU time has been a big problem
in contact analysis. Hertzian contact of rigid
sphere and elastic flat plane was taken as an
example to show the efficiency of this FFT tech
nique. The example is like this. The radius of the
sphere is 100mm, modules of elasticity of plane is
200Gpa and its Poisson's ratio is 0.3. the relative
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Table 1 CPU time and accuracy

Algorithm
SOR FFT

Ratio
method method

CPU time 3600 sec 50 sec 1/72

Error of Maxi-
0.08% 0.07%

mum Pressure

X/a

Fig. 4 Displacement along x-axis at the surface

1
-0- Numerical R••ult

~ ··· ..... ·-·E:..ctSOlution

I ~
J \

I \
r \1 Q

" c\

-1 °
Xla

·2

0.4

0.2

0.'

1.0

10
I-0- Nomenelll R81ult I

....... .. .... Exac:t Solution

0.8 / \
'" 0.8 i \-; J •

0.4
q

0

02

OOO~

0.0
-3 -2 -1

A.,°o.a

...

....
ii:

Fig. 3 Contact pressure along x-axis at the surface

Fig. 5 3-D view of contact pressure in Hetzian
contact

present algorithm, it took less than 30 minutes.

To describe the roughness of a real surface,

No

Yes

Fig. 2 Flow chart

Assumethe displacement of surfacewhose

maximumis the approchof twosurfaces

Evaluatesubsurfacestress by FIT technique

approach of the two surfaces was set O.Olmm. The

number of nodes is 64 X 64 and grid size is O. I X

O. Imm", The numerical result was compared with

exact solution (Johnson, 1985). Figures 3 and 4

show the contact pressure distribution and dis

placements in the contact region along x-axis,

The numerical result coincides very well with

exact solution. Figures 5 and 6 show the three

dimensional view of the contact pressures and the

deformation of the surface.

In Table I, the CPU time and accuracy were

compared with that of successive over relaxation

(SOR) technique which is a most popular numer

ical procedure in contact analysis. In this case, the

number of nodes is 64 X 64. The CPU time is only

about 1/72 of that of SOR technique. As

mentioned above, the difference of efficiency

depends on the number of nodes. Tian and Bhu

shan (1996) obtained the solution of Hertzian

contact described by 256 X 256 in 4 days. With the
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Fig. 6 3-D view of displacement in Hetzian contact
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Fig. 7 The equivalent stress distribution on the
plane of y=O in the solid

more nodes may be required. In the analysis of

contact of surface which is discretized by N X N
nodes, the influence matrix of N X N should be
constructed and the maximum size of the matrix is

radically enlarged to N 2 X N 2 in SOR algorithm.
As a result, the computing time is exponentially
increased with the number of nodes. Considerably
long computing time is required with the conven
tional techniques in analyzing the contact of 3

dimensional rough surfaces.
The same FFT technique is used for calculating

the subsurface stresses caused by the above exam
ple of Hertzian contact. The stresses were calcu

lated to the depth of 2a. where a is half length of
Hertzian contact. The number of nodes along z
-axis was 64. The computing time was consider
ably reduced comparing to conventional numeri

cal integration method. The stresses in Fig. 7 and
8 were normalized by maximum contact pressure

Po. Figure 7 is the equivalent stress distribution
on the plane of y=O in the solid. Maximum
equivalent stress is occurred at 0.468a and its
value is 0.6425po. Their exact solution are 0.464a

ZI.

(b) 1f,/p. along z axis

Fig. 8 Comparison of the numberical results and
the exact solution of stress

and 0.6434po respectively.
The numerical results for stress components

along z-axis are compared with the exact solution
(Johnson, 1985) in Fig. 8.

5. Conclusions

A new numerical technique using FFT was
developed for contact analysis and calculating the

sub-surface stress, and its efficiency was proved.
Boussinesq's equation was adopted as a response
function and a filter in frequency domain in this

method. The following conclusions are derived
from this study.

(l) FFT method was very efficient both in

CPU time and in memory size.
(2) FFT method can be effectively used to the

calculation of subsurface stress distribution

caused by contact pressure.
(3) Numerical results were very well consistent

with the exact solution.
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Appendix

The derivatives of potential function X and V are:

~=p{tan-l~+tan-l b+y: -tan-1 z(b-/)
ox a-x a-x (a-x )al

-tan-1 z(b+y') +tan-d~-=L+tan-t_Q±.i..-tan-lz(b-y') tan-1 z(b+y') }
(a-x')d4 a+x' a+x' (a+x')bz (a+x')Ca

fl=p{tan-1 a-x' -l-tan" a+x' -tan-1z(a-x')
OyZ b - y' b - y' (b - y') al

-tan-1 z(a+x') -l-tan" a-x' -j-tarr" a+x' -tan-1 z(a-x') tan:" z(a+x') }
ib - y') bz b + y' b + y' (b + y') d, ib + y') Ca

....1x.......-plog (z+al) (Z+Ca)
ox'oy' - (z+bz) (Z+d4)

OV --p{2 -cos-1 (a-x') (b-y') cos-1 (a-x') (b+y')
QZ - 7r /(a-x,)z+r !(b-y,)z+r !(a-x,)z+r !(b+y,)z+r

-cos-1 (a+x') (b-y') cos:" (a+x') (b+y') }
!(a+x,)2+ r !(b-y)z+r !(a+x,)z+r !(b+y,)z+r

azv __ { a-x' (..!!..:::L...Q±L a+x' (1..::::.X.-..Q±L }
87- p (a-x')2+? al + d; ) + (a+x')z+? bz + Ca )

~y~ =-p{ (b!;}~? (a~lx' + at
x') + (b:;)~~? (a~x' + a;a

X')}

az V _ p{ a - x' (1..::::.X.-+..Q.±L) + a+x' (1..::::.X.-+..Q.±L)azr- (a-x')2+? al d; (a+x')2+? bz Ca

b-y' a-x' a+x' b+y' a-x' a+x'}
+ (b-y')2+? (-al-+~)+ (b+y')2+? (--a;-+----c;-)

az V _ { Z 1-=L..Q±L Z 1..::::.X.-..Q.±L }
QXOZ -p (a-x')2+? ( al + d, ) (a+x')2+ z2 ( bz + Ca )

QZV p{ Z (a-x'+a+x') Z (a-x'+a+x')}
QXQZ = (b-y')2+? -a-l- ~ (b+y')2+? --a;- ----c;-
QZV I I I I
QXQY = p(a;--,;;+c;- d4)

where at> bz, Ca, d, are the distances of a point of (x, y, z) from corners of the pressed surface square
whose center is at (.;, TJ, 0) and x', y' are x -.;, Y -TJ respectively


